能够免费观看的AV片_亚洲日本va中文字幕无_欧美换爱交换乱理完整版_成长av影片免费观看网站

 
高一數(shù)學知識點——冪函數(shù)
數(shù)學 來源:網絡 編輯:小新 2017-08-24 14:19:07

  數(shù)學學習較關鍵的就是把握知識點,伊頓教育小編今天為高二的同學們送上高一數(shù)學重要知識點——冪函數(shù),這些重要的知識點可都是考試的考點哦,趕快和小編一起來看一看吧!!!

  冪函數(shù)定義:

  形如y=x^a(a為常數(shù))的函數(shù),即以底數(shù)為自變量冪為因變量,指數(shù)為常量的函數(shù)稱為冪函數(shù)。

  定義域和值域:

  當a為不同的數(shù)值時,冪函數(shù)的定義域的不同情況如下:如果a為任意實數(shù),則函數(shù)的定義域為大于0的實數(shù);如果a為負數(shù),則x肯定不能為0,不過這時函數(shù)的定義域還需要根[據(jù)q的奇偶性來確定,即如果同時q為偶數(shù),則x不能小于0,這時函數(shù)的定義域為大于0的實數(shù);如果同時q為奇數(shù),則函數(shù)的定義域為不等于0的實數(shù)。當x為不同的數(shù)值時,冪函數(shù)的值域的不同情況如下:在x大于0時,函數(shù)的值域總是大于0的實數(shù)。在x小于0時,則只有同時q為奇數(shù),函數(shù)的值域為非零的實數(shù)。而只有a為正數(shù),0才進入函數(shù)的值域。

  性質:

  對于a的取值為非零有理數(shù),有需要分成幾種情況來討論各自的特性:

  首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當指數(shù)n是負整數(shù)時,設a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號下而不能為負數(shù),那么我們就可以知道:

  排除了為0與負數(shù)兩種可能,即對于x>0,則a可以是任意實數(shù);

  排除了為0這種可能,即對于x<0和x>0的實數(shù),q不能是偶數(shù);

  排除了為負數(shù)這種可能,即對于x為大于且等于0的實數(shù),a就不能是負數(shù)。

  總結起來,就可以得到當a為不同的數(shù)值時,冪函數(shù)的定義域的不同情況如下:

  如果a為任意實數(shù),則函數(shù)的定義域為大于0的實數(shù);

  如果a為負數(shù),則x肯定不能為0,不過這時函數(shù)的定義域還需要根據(jù)q的奇偶性來確定,即如果同時q為偶數(shù),則x不能小于0,這時函數(shù)的定義域為大于0的實數(shù);如果同時q為奇數(shù),則函數(shù)的定義域為不等于0的實數(shù)。

  在x大于0時,函數(shù)的值域總是大于0的實數(shù)。

  在x小于0時,則只有同時q為奇數(shù),函數(shù)的值域為非零的實數(shù)。

  而只有a為正數(shù),0才進入函數(shù)的值域。

  由于x大于0是對a的任意取值都有意義的,因此下面給出冪函數(shù)在第一象限的各自情況。

  可以看到:

  (1)的圖形都通過(1,1)這點。

  (2)當a大于0時,冪函數(shù)為單調遞增的,而a小于0時,冪函數(shù)為單調遞減函數(shù)。

  (3)當a大于1時,冪函數(shù)圖形下凹;當a小于1大于0時,冪函數(shù)圖形上凸。

  (4)當a小于0時,a越小,圖形傾斜程度越大。

  (5)a大于0,函數(shù)過(0,0);a小于0,函數(shù)不過(0,0)點。

  (6)顯然冪函數(shù)無界。

*本文內容來源于網絡,由秦學教育整理編輯發(fā)布,如有侵權請聯(lián)系客服刪除!
文章標簽: 數(shù)學 高一
上一篇:【長春市十一高,白城一中聯(lián)考】2017~2018學年高一首次月考數(shù)學試卷
預約領取試聽課
我們?yōu)槟鷾蕚淞?
  • 學業(yè)水平系統(tǒng)測評
  • 個性化針對教學計劃
  • 線下逆襲試聽課
  • 系列學科學習資料
確認預約
熱門活動
補習學校
補習學校
考前沖刺
考前沖刺
藝考沖刺  不一樣的藝考培訓
藝考沖刺 不一樣的藝考培訓
個性化一對一  小班課輔導
個性化一對一 小班課輔導
  • 熱門課程
  • 熱門資訊
  • 熱門資料
  • 熱門福利
親愛的家長(學生)您好:
恭喜您,您已經預約成功!
同時你將獲得一次學習測評機會
+年級學科資料